Spectral–Spatial Anomaly Detection of Hyperspectral Data Based on Improved Isolation Forest

نویسندگان

چکیده

Anomaly detection in hyperspectral image (HSI) is affected by redundant bands and the limited utilization capacity of spectral–spatial information. In this article, we propose a novel improved Isolation Forest (IIF) algorithm based on assumption that anomaly pixels are more susceptible to isolation than background pixels. The proposed IIF modified version (iForest) algorithm, which addresses poor performance iForest detecting local anomalies high-dimensional data. Furthermore, detector (SSIIFD) make full use global information, as well spectral spatial To be specific, first, apply Gabor filter extract features, then employed input relative mass forest (ReMass-iForest) obtain score. Next, original images divided into several homogeneous regions via entropy rate segmentation (ERS) preprocessed Finally, fuse scores combining them linearly predict experimental results four real datasets demonstrate outperforms other state-of-the-art methods.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

3D Gabor Based Hyperspectral Anomaly Detection

Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...

متن کامل

Title : Adaptive Anomaly Detection using Isolation Forest

Ranking measure is of prime importance in anomaly detection tasks because it is required to rank the instances from the most anomalous to the most normal. This paper investigates the underlying assumptions and definitions used for ranking in existing anomaly detection methods; and it has three aims: First, we show evidence that the two commonly used ranking measures—distance and density—cannot ...

متن کامل

Kernel-Based Anomaly Detection in Hyperspectral Imagery

In this paper we present a nonlinear version of the wellknown anomaly detection method referred to as the RXalgorithm. Extending this algorithm to a feature space associated with the original input space via a certain nonlinear mapping function can provide a nonlinear version of the RX-algorithm. This nonlinear RX-algorithm, referred to as the kernel RX-algorithm, is basically intractable mainl...

متن کامل

Impact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images

Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...

متن کامل

Behavior-based anomaly detection on big data

Recently, cyber-targeted attacks such as APT (Advanced Persistent Threat) are rapidly growing as a social and national threat. It is an intelligent cyber-attack that infiltrates the target organization and enterprise clandestinely using various methods and causes considerable damage by making a final attack after long-term and through preparations. These attacks are threatening cyber worlds suc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing

سال: 2022

ISSN: ['0196-2892', '1558-0644']

DOI: https://doi.org/10.1109/tgrs.2021.3104998