Spectral–Spatial Anomaly Detection of Hyperspectral Data Based on Improved Isolation Forest
نویسندگان
چکیده
Anomaly detection in hyperspectral image (HSI) is affected by redundant bands and the limited utilization capacity of spectral–spatial information. In this article, we propose a novel improved Isolation Forest (IIF) algorithm based on assumption that anomaly pixels are more susceptible to isolation than background pixels. The proposed IIF modified version (iForest) algorithm, which addresses poor performance iForest detecting local anomalies high-dimensional data. Furthermore, detector (SSIIFD) make full use global information, as well spectral spatial To be specific, first, apply Gabor filter extract features, then employed input relative mass forest (ReMass-iForest) obtain score. Next, original images divided into several homogeneous regions via entropy rate segmentation (ERS) preprocessed Finally, fuse scores combining them linearly predict experimental results four real datasets demonstrate outperforms other state-of-the-art methods.
منابع مشابه
3D Gabor Based Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is one of the main challenging topics in both military and civilian fields. The spectral information contained in a hyperspectral cube provides a high ability for anomaly detection. In addition, the costly spatial information of adjacent pixels such as texture can also improve the discrimination between anomalous targets and background. Most studies miss the wort...
متن کاملTitle : Adaptive Anomaly Detection using Isolation Forest
Ranking measure is of prime importance in anomaly detection tasks because it is required to rank the instances from the most anomalous to the most normal. This paper investigates the underlying assumptions and definitions used for ranking in existing anomaly detection methods; and it has three aims: First, we show evidence that the two commonly used ranking measures—distance and density—cannot ...
متن کاملKernel-Based Anomaly Detection in Hyperspectral Imagery
In this paper we present a nonlinear version of the wellknown anomaly detection method referred to as the RXalgorithm. Extending this algorithm to a feature space associated with the original input space via a certain nonlinear mapping function can provide a nonlinear version of the RX-algorithm. This nonlinear RX-algorithm, referred to as the kernel RX-algorithm, is basically intractable mainl...
متن کاملImpact of linear dimensionality reduction methods on the performance of anomaly detection algorithms in hyperspectral images
Anomaly Detection (AD) has recently become an important application of hyperspectral images analysis. The goal of these algorithms is to find the objects in the image scene which are anomalous in comparison to their surrounding background. One way to improve the performance and runtime of these algorithms is to use Dimensionality Reduction (DR) techniques. This paper evaluates the effect of thr...
متن کاملBehavior-based anomaly detection on big data
Recently, cyber-targeted attacks such as APT (Advanced Persistent Threat) are rapidly growing as a social and national threat. It is an intelligent cyber-attack that infiltrates the target organization and enterprise clandestinely using various methods and causes considerable damage by making a final attack after long-term and through preparations. These attacks are threatening cyber worlds suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Geoscience and Remote Sensing
سال: 2022
ISSN: ['0196-2892', '1558-0644']
DOI: https://doi.org/10.1109/tgrs.2021.3104998